منابع مشابه
Explicit Unique-Neighbor Expanders
We present a simple, explicit construction of an infinite family F of bounded-degree ’unique-neighbor’ expanders Γ; i.e., there are strictly positive constants α and , such that all Γ = (X,E(Γ)) ∈ F satisfy the following property. For each subset S of X with no more than α|X| vertices, there are at least |S| vertices in X \ S that are adjacent in Γ to exactly one vertex in S. The construction o...
متن کاملExplicit expanders with cutoff phenomena
The cutoff phenomenon describes a sharp transition in the convergence of an ergodic finite Markov chain to equilibrium. Of particular interest is understanding this convergence for the simple random walk on a bounded-degree expander graph. The first example of a family of bounded-degree graphs where the random walk exhibits cutoff in total-variation was provided only very recently, when the aut...
متن کاملExpanders that Beat the Eigenvalue Bound : Explicit
For every n and 0 < < 1, we construct graphs on n nodes such that every two sets of size n share an edge, having essentially optimal maximum degree n 1?+o(1). Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k+o(1) comparisons. 2. A k round selection algorithm using n 1+1=(2 k ?1)+o(1) comparisons. 3. A depth 2 superconcentrat...
متن کاملAn Explicit Construction of Quantum Expanders
Quantum expanders are a natural generalization of classical expanders. These objects were introduced and studied by [1, 3, 4]. In this note we show how to construct explicit, constant-degree quantum expanders. The construction is essentially the classical Zig-Zag expander construction of [5], applied to quantum expanders.
متن کاملExpanders that Beat the Eigenvalue Bound: Explicit Construction
For every n and 0 < δ < 1, we construct graphs on n nodes such that every two sets of size n share an edge, having essentially optimal maximum degree n1−δ+o(1). Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n comparisons. 2. A k round selection algorithm using n −1)+o(1) comparisons. 3. A depth 2 superconcentrator of size n. 4. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmica
سال: 2016
ISSN: 0178-4617,1432-0541
DOI: 10.1007/s00453-016-0269-x